1. PHASES OF WATER (6 points) — Solution by Johan Runeson, grading schemes by Johan Runeson and Adam Warnerbring.

i) (1.5 points) We approximate the volume difference by the volume of the gas and use the ideal gas law: $V_g - V_l \approx V_g = \frac{nRT}{mp} = \frac{RT}{\mu p}$ Then it follows from the law of Clausius-Clapevron that

$$\frac{\mathrm{d}p}{p} = \frac{\mu |\Delta H_{lg}|}{RT^2} \, \mathrm{d}T$$

which after integration gives

$$p = p_0 \exp\left(-\frac{\mu |\Delta H_{lg}|}{RT}\right),$$

where p_0 is a reference pressure. We also accept introducing a reference temperature T_0 so that

$$p = p'_0 \exp\left[-\frac{\mu |\Delta H_{lg}|}{R} \left(\frac{1}{T} - \frac{1}{T_0}\right)\right], \quad (1)$$

where p'_0 is another reference pressure.

Grading: Using ideal gas law – **0.5 pts**; Writing correct differential equation – **0.2** pts; Solution has exponential dependence of 1/T- 0.6 pts; Correct solution overall – **0.2 pts**;

ii) (1.5 points) For any two points on the liquid-gas transision curve it holds that

$$\frac{p_2}{p_1} = \exp\left(-\frac{\mu|\Delta H_{lg}|}{R}\left[\frac{1}{T_2} - \frac{1}{T_1}\right]\right),$$

assuming that ΔH_{lg} is constant. Using for example $T_1 = 0^{\circ}$ C, $p_1 = 610$ Pa, $T_2 = 10^{\circ}$ C and $p_2 = 1230$ Pa (with temperatures converted to kelvin), we get $|\Delta H_{lg}| = 2503 \text{ kJ/kg}$. Using this together with $T_3 = 15^{\circ}\text{C} = 283.15\text{ K}$ and $T_4 = T_3 + 3 \mathrm{K}$ gives

$$\frac{p_4 - p_3}{p_3} = \exp\left(-\frac{\mu |\Delta H_{lg}|}{R} \left[\frac{1}{T_4} - \frac{1}{T_3}\right]\right) - 1 = 0.21. \quad \text{Grading: Found } \Delta H_{sl} - 0.5 \text{ pts}$$

That is, the vapor pressure rises by 21%. Using slope of melting curve – **0.5 pts**; more humid weather after global warming. **pts**; On the other hand, the Earth is not homogen- Correct result within 50% - 0.5 pts; eous, and in reality it is expected that wet locations become more wet while dry locations Wrong sign -- **0.5** pts; become more dry.)

graph – **0.4 pts**; $10\% - 0.3 \, \text{pts};$ Correct formula for $p_2/p_1 - 0.3$ pts; Correct percentage ±2% – 0.5 pts;

Grading for alternative solution: Extrapolation via derivative – **0.5 pts**; Correct expression for final result – **0.5 pts**; Correct percentage $\pm 2\% - 0.5$ pts;

iii) (3 points) First, look at the solid-gas transition line and assume also here that $V_g - V_s \approx V_g$. This gives a similar curve as for the liquid-gas transition but with a different transition enthalpy. From $T_5 = 0$ °C, $p_5 = 610$ Pa, $T_6 = -10^{\circ}$ C and $p_6 = 260$ Pa, we get the sublimation enthalpy $|\Delta H_{sg}|$ = 2828kJ/kg. This allows us to compute the melting enthalpy as

$|\Delta H_{sl}| = |\Delta H_{sg}| - |\Delta H_{lg}| = 325 \,\mathrm{kJ/kg}.$

To measure the slope of the melting curve we draw a tangent in the origin and measure (for example) $\Delta T = 5$ K and $\Delta p = -0.65 \times 10^8$ Pa. With $T = 273.15 \,\mathrm{K}$, the law of Clausius-Claperyron finally gives

$$V_l - V_s = \frac{\Delta T}{\Delta p} \frac{|\Delta H_{sl}|}{T} = -9.2 \times 10^{-5} \,\mathrm{m}^3/\mathrm{kg}.$$

(The experimental value is $-9.1 \times 10^{-5} \text{ m}^3/\text{kg.}$) Note that ice has a larger volume than liquid water, which is an exception from most other substances.

 $H_{sg} - 0.5 \, \mathrm{pts};$

(This means that the water cycle will be en- Accurately measuring the slope of the melthanced, so that we can on average expect ing curve near atmospheric pressure -0.5

Correct result within 10% - 0.5 pts;

Grading: Found ΔH_{lg} by measuring in **2. TUNNEL DIODE (10 points)** – Solution by Taavet Kalda, grading schemes by Jaan Kalda, Numerical value for $|\Delta H_{lg}|$ correct within Axel Boeltzig, Bastian Hacker, and Fedor Tsybrov.

> i) (1 point) Kirchhoff's voltage law (KVL) on the circuit:

> > $\mathscr{E} = I_i r + V_i$.

$$I_i = \frac{\mathscr{E} - V_i}{r} = 25 \,\mathrm{mA} - \frac{1}{2\Omega} V_i. \tag{2}$$

curve. We can find a solution graphically by $V_i = 20 \,\mathrm{mV}, I_i = 15.3 \,\mathrm{mA}.$

0.3 pts;

ing this procedure clearly in text -0.3 pts (attempts of substituting the diode with equivalent resistance, only if numerically reasonable equivalent resistance - **0.1 pts**; 15 to 15.5 mA) – **0.2 pts** (for *I* from 14 to 16 mA - 0.1 pts);

for correct numerical value for V (from 19 to 20 mV) – **0.2 pts** (for V from 18 to 22 mV – 0.1 pts). If the pair of values is not consistent with the KVL (voltage mismatch is $\geq 1 \,\mathrm{mV}$), subtract 0.1 from the voltage value subscore (if it was positive). No marks for the numerical values if obtained in a wrong way.

ii) (1 point) After setting r = 0, the KVL takes the form

$$\mathscr{E} = V_i + L \frac{\mathrm{d}I_i}{\mathrm{d}t}.$$
(3)

Rearranging and integrating,

$$L\int_0^{I_1}\frac{\mathrm{d}I_i}{\mathscr{E}-V_i(I_i)}=\int_0^{t_1}\mathrm{d}t.$$

 V_i and I_i also have to obey the diode's V - I Looking at the idealised V - I dependence, it's clear that $V_i(I_i) = 0$ all throughout the plotting (2) on the V - I curve. This yields increase of current from $I_i = 0$ to $I_i = I_1 =$ 20 mA. This simplifies the expression for t_1 :

$$t_1 = \frac{L}{\mathscr{E}} \int_0^{I_1} \mathrm{d}I_i = \frac{LI_1}{\mathscr{E}} = 4 \times 10^{-8} \,\mathrm{s}.$$

Grading:

Writing down correct KVL – **0.3 pts**; Integrate equation – **0.2 pts**; Note that $V_i(I_i) = 0 - 0.2 \text{ pts};$ Correct result for $t_1 - 0.2$ pts;

Grading: Writing down correct KVL – **iii)** (1 point) Equation (3) must hold no matter what the characteristic curve for the didrawing a correct line on V-I curve or explain- ode looks like. This means that the current will continue to rise without any discontinuities, even if it means the voltage on the diode will jump (the inductance keeps the current from changing too fast but there is no such obtaining correct numerical value for *I* (from constraint on the voltage). The expected behaviour of V - I is given in the following figure:

In leg 2 of the journey, the current increases from $I_i = 0$ to $I_i = I_2 = 21 \text{ mA}$ (measured from the figure). The time taken is $t_2 = LI_2 / \mathscr{E} = 4.2 \times 10^{-8} \, \mathrm{s.}$ Since in leg 3, the change in current is 0, the time taken is essentially instantaneous compared to t_2 . Hence $t_3 = 0$ for our considerations. The total time taken is then

$$t_2 + t_3 = 4.2 \times 10^{-8} \,\mathrm{s}.$$

Grading:

Description / understanding of the processes - 0.5 pts; Calculation $t_2 - 0.2$ pts; Result *t*₂ + *t*₃ − **0.3 pts**;

iv) (2 points) We can use similar logic as before to deduce how the voltage and current behave as a function of time. Since the equilibrium voltage $\mathscr{E} = 250 \,\mathrm{mV}$ lies between the two peaks in the V - I curve, the current will perform a horizontal jump as before. At V_2 = 500 mV, equation (3) takes the form

$$\mathscr{E} = V_2 + L \frac{\mathrm{d}I_i}{\mathrm{d}t}$$

SO

Hence, I_i will continue to decrease from I_2 to $I_3 = 1 \text{ mA}$. Like before, the voltage will then instantaneously jump from V_2 to 0 and the cycle starts again. A sketch of a single cycle is shown in the following figure.

The time taken in legs 3 and 5 are effectively 0 and because the deviation of the voltage from \mathcal{E} in legs 2 and 4 is the same, alongside with the change in current, the time duration for 2 and 4 must also be the same. The change in current is $I_2 - I_3 =$ $20 \text{ mA} = I_1$. Hence $t_2 = t_4 = t_1$ and the duration of one full period is $T = t_2 + t_3 + t_4 + t_5 =$ $2t_1 = 8 \times 10^{-8}$ s. A sketch of *I* as a function of time is shown in the following figure. t' has the moment when the current is at its minimum at t' = 0.

Grading:

Writing down correct KVL at $V_2 - 0.3$ pts; Argument that Δt_3 and $\Delta t_5 = 0 - 0.3$ pts; Calculation $\Delta t_4 - 0.3$ pts; Period of oscillation – **0.3 pts**; Amplitude of oscillation – **0.3 pts**; Offset of oscillation – **0.2 pts**; Correct plot, starting from I = 0 - 0.3 pts;

v) (2 points) The system operates in 4 distinct modes as the battery voltage is varied:

21mA and reach the equilibrium posi- marised in the following plot: tion at $V = \mathcal{E}$. Indeed, it's an equilibrium because it satisfies KVL given by (3):

$$\frac{\mathrm{d}I}{\mathrm{d}t} = 0 = \frac{\mathscr{E} - V}{L}.$$

Hence, the ammeter measures a constant 21mA.

- 2. Applied voltage is between the two peaks in the V - I curve. The system will follow a similar trajectory to the one exhibited in iv) since the same argumentation holds. Following the same notation as in iv), the average current in leg 2 is the arithmetic average between 1mA and 21mA (because the current is increasing at a constant **vi)** (1 point) rate). Leg 2 thus has an average current of 11mA. Leg 4 similarly has the same average current. Leg 3 and 5 don't contribute to the average current because they happen effectively instantaneously. The total average current is then 11mA.
- 3. Applied voltage is bigger than the second peak in the V - I curve but smaller than **500mV**. In the beginning, the current will increase to 21mA and make a horizontal jump, just as expected. Then the current will decrease to 1mA and the voltage takes the value of the battery and reaches an equi- Therefore librium without performing any additional jumps. The average current is thus 1mA.
- 4. If the applied voltage is bigger than 500 mV, then the current will blow up to infinity (in our ideal model) and that's not physical. Hence, the current is undefined.

1. Applied voltage is smaller than the first From the V - I curve, the first peak has a peak in the V - I curve. In that case, voltage of $V_3 = 50 \,\mathrm{mV}$, second a voltage of the current will increase from 0 to $I = V_4 = 400 \,\mathrm{mV}$. The four scenarios can be sum-

Grading: For each of the four modes, Identification – **0.2 pts**; Determination of constant value – **0.3 pts**;

First, we'll find the operational mode using the same graphical method as in part i). The graphed line has an equation of

$$I_i = \frac{\mathscr{E} - V_i}{r} = 75 \,\mathrm{mA} - \frac{1}{2\Omega} V_i,$$

shown in red in the figure. The steady voltage and current are measured to be $V_0 = 125 \,\mathrm{mV}$ and $I_0 = 11.9 \text{ mA}$. For small perturbations from the steady state, we can use Taylor series while neglecting higher orders:

$$V_0 + \delta V(t) = V(I_0 + \delta I(t)) \simeq V_0 + \delta I(t) \left. \frac{\mathrm{d}V}{\mathrm{d}I} \right|_{I_0}.$$

$$\delta V = \left. \frac{\mathrm{d}V}{\mathrm{d}I} \right|_{I_0} \delta I = R_d \delta I.$$

We can express $\left. \frac{\mathrm{d} V}{\mathrm{d} I} \right|_{I_0}$ graphically by drawing a line tangent to the V - I curve going through the steady state. The derivative is then found by dividing the horizontal projection with the vertical, while keeping track of

the sign:

Grading: Writing down correct KVL – **0.1**

pts; drawing a correct line on V-I curve or explaining this procedure clearly in text – **0.2 pts**; obtaining correct numerical value for I (from

11 to 13 mA) – **0.1 pts**;

for correct numerical value for V (from 115) to 135 mV) - 0.1 pts;

for drawing tangent line to the curve through the intersection point – **0.2 pts**;

determining correctly R_d as the slope of the tangent (from -6.5 to -7.6) – **0.3 pts**; if the result is from -6 to -8 - 0.2 pts, if it is from from -5 to -9 - 0.1 pts. Zero marks if the minus sign is missing.

If final result is correct, but the values of I_0 and V_0 not shown, no penalty is applied.

vii) (2 points) In order to find the stability condition, one could operate with complex impedances and write down the resonance condition

$$r + \mathrm{i}\omega L + \frac{R_d}{\mathrm{i}\omega R_d C + 1} = 0,$$

hence, denoting $\lambda = i\omega$,

$$r + \lambda L)(\lambda R_d C + 1) + R_d = 0.$$

would be to write down the KVL and solve the resulting differential equation.

where $\delta q = \delta I R_d C$. KVL for the whole circuit for b and c for this to be the case. takes the form

$$\begin{split} 0 &= (\delta I + \dot{\delta q})r + L\frac{\mathrm{d}}{\mathrm{d}t} \big(\delta I + \dot{\delta q}\big) + \delta IR_d \\ &= R_d LC \dot{\delta I} + (L + R_d r C) \dot{\delta I} + (R_d + r) \delta I \\ &= \ddot{\delta I} + \left(\frac{1}{R_d C} + \frac{r}{L}\right) \dot{\delta I} + \frac{r + R_d}{R_d L C} \\ &= \ddot{\delta I} + b \dot{\delta I} + c, \end{split}$$

where $b = \left(\frac{1}{R_d C} + \frac{r}{L}\right)$, $c = \frac{r+R_d}{R_d L C}$. This is a second order differential equation. Depending on the values for b and c, the solution might grow exponentially. The standard method for solving this type of equation involves making an educated guess and plugging it into the equation. In this case, an exponential solution of the form δI = $\delta I_0 \exp(\lambda t)$ will work. Note that this is all equivalent to operating with complex impedances but with $\lambda = i\omega$. substituting the ansatz into the differential equation and reducing the prefactors, one gets the characteristic equation:

 $\lambda^2 + b\lambda + c = 0.$

This is a quadratic equation with two solutions

$$\lambda_{12}=-rac{b}{2}\pm\sqrt{rac{b^2}{4}-c}.$$

 λ_{12} can be either both real or both complex, hence depending on the sign of the discriminant. If $\lambda_i = m_i + n_i i$, where *m*, and *n* are both real, then

$$\delta I = \sum_{j=1}^{2} \delta I_{0j} \mathrm{e}^{m_j t} \left(\cos(n_j t) + \mathrm{i} \sin(n_j t) \right).$$

stable, m < 0 is needed as that leads to an exponential decay in the current. In other initial KVL for whole circuit -0.3 pts;

Let the deviation of the charge on the words, the real part of λ has to always be negcapacitor from steady state be δq . Then, ative, otherwise the current will start growthrough the resistor r and inductor is $\delta I + \delta q$, possible to determine necessary conditions

> Vieta's second formula states that $\lambda_1 \lambda_2 =$ *c*. If λ is real, then this means that *c* has to be positive, because otherwise either λ_1 or λ_2 is negative. If λ is complex, then λ_2 and λ_1 are each-other's complex conjugates and so their product must be positive. Hence, c > 0regardless of whether λ is real or complex.

> According to Vieta's first formula, λ_1 + $\lambda_2 = -b$. If λ is real, then their sum has to be negative, otherwise at least one of λ_1 and λ_2 is positive. Hence, b > 0. If λ is complex, then their sum is purely real (because they're each-other's complex conjugates) and hence again, the sum has to be negative for the real parts to be negative. Hence, b > 0 must always hold.

> The b > 0 and c > 0 are necessary and sufficient conditions for the solution to be stable. Condition b > 0 implies

$$\left(\frac{1}{R_dC} + \frac{r}{L}\right) > 0$$

$$L < |R_d| rC = 4.3 \times 10^{-10} \,\mathrm{H} = 0.43 \,\mathrm{nH}.$$

Inequality c > 0 implies

SO

$$\frac{r+R_d}{R_dLC} > 0$$

r

$$+R_d < 0.$$

As can be seen, the value for *L* can't exceed 0.43 nH.

deviation – **0.1 pts**;

A more tedious but perhaps clearer way. It can be seen that for the solution to be relationship between capacitor charge δq and diod current δI – **0.1 pts**;

correct differential equation – **0.3 pts**; quadratic equation – **0.2 pts**; from KVL, $\delta IR_d = \delta q/C$. Hence, the current ing exponentially. With careful analysis, it's analyze of quadratic equation according to the problem – **0.6 pts**; expression for inductance: $L < |R_d| rC - 0.3$ pts; numerical answer: *L* < 0.43 *nH* − **0.1 pts**;

> **3.** CONICAL ROOM (3 points) — Solution by Taavet Kalda, grading schemes by Maurice Zeuner, Eugen Dizer, and Titus Bornträger. If the distance from the base to the apex is *H*, then from energy conservation

$$gH = \frac{v_0^2}{2}.$$

Let the shortest distance from the base to the wall be h and the sought minimal speed v_1 . From geometry, $h = H \sin \alpha$. Let's consider a new system of coordinates where the two axis x' and y' are parallel and perpendicular to the wall respectively. Gravitational acceleration has components $g_{x'} = g \cos \alpha$ and $g_{\nu'} = g \sin \alpha$. It is clear that the motion along the x' axis doesn't affect whether the projectile hits the wall. Because the motions in the x' and y' direction are independent, one has to set the component of \vec{v}_1 parallel to x'to **0** in order to minimize the total speed.

Then the problem reduces to hitting a projectile into a conventional ceiling of height *h* in effective gravity $g \sin \alpha$. Thus, from energy conservation,

$$g\sin\alpha h = gH\sin^2\alpha = \frac{v_1^2}{2}.$$

And so

$$v_1 = v_0 \sin \alpha = \frac{\sqrt{3}}{2} v_0$$

Grading: We expect to see mostly two dif-Grading: consideration of current small ferent solution schemes. The first one is the given sample solution using the coordinate transformation. The second one is by mathematically deriving the intersection points of the trajectory with the walls.

Grading for sample solution: Deriving the relation $gH = v_0^2/2$. - 0.5 pts; Using the relation $h = H \sin \alpha$. - 0.5 pts; Change of coordinate system and splitting the gravitational force – **1.0 pts**; Further calculation – **0.5 pts**; Correct result for $v_1 - 0.5$ pts.

Grading for alternative methods: Deriving the relation $gH = v_0^2/2$. – **0.5 pts**; Equations of motion and derivation of the trajectory y(x) of the projectile – **0.5 pts**; Mathematical description of wall – **0.3 pts**; Solving for intersection points and choosing the physical solution – **0.7 pts**; Finding the optimal angle for minimum velocity (first derivative of velocity with respect to initial angle must be zero) – **0.5 pts**; Correct result for $v_1 - 0.5$ pts.

4. DRONE (9 points) — Solution by Taavet Kalda, grading schemes by Oleg Košik, Jānis Cimurs, and Joonas Kalda.

i) (2 points) Let the mass of the cuboid be **M**. There are three forces acting on the drone: the resultant of friction and the normal force \vec{F}_f , rope tension \vec{T} directed along the rope, and gravitational acceleration $M\vec{g}$ directed vertically down from the centre of the cuboid. Since the cuboid is sliding with constant speed, the three forces must balance each other out. The only way for this to be possible is if the vectorial extensions of the forces intersect in one point, **O**.

One can prove this by contradiction. If the forces don't intersect in a single point, one needs only consider the torque around one of the intersection points to see that there is non-zero torque and that the forces aren't in equilibrium.

If the normal force is N, then the frictional force is $N\mu$ so the resultant $\vec{F}_f = N\hat{y}$ – $N\mu\hat{x}$. Therefore, \vec{F}_f is always directed at an From the figure we measure $x_1/x_2 = 0.796$ and angle $\alpha = \arctan \mu$ with respect to the vertical. so

Since the starting point and direction of the forces of gravity and tension are known,

one can reconstruct the position of O and \vec{F}_{f} . Because $\mu = \tan \alpha$, one can conveniently measure μ as the ratio of the horizontal and vertical projection of \vec{F}_f : $\mu \approx 0.659$.

ii) (2 points) Consider the system made up of the cuboid and the drone. Once again, there are three forces acting on this system: gravitational force $(M+m)\vec{g}$, friction \vec{F}_f , and the force \vec{F} keeping drone afloat. The thrust for the drone is directed along the symmetry axis of the drone. Since the forces are in equilibrium, their extensions must intersect in one point O'. Owing to the last part, O' can be found by intersecting the frictional force and the thrusting force. Since gravitational force is vertical, we can find the horizontal projection of the centre of mass. If x_1 and x_2 are the horizontal distances from O' to the centres of the cuboid and drone respectively, then

M = 0.796m = 0.796 kg.

Grading for i) and ii)

N is normal force -0.2 pts;

cuboid – **0.2 pts**;

deriving μ – **0.4 pts**;

within 10% - 0.2pts)

on drone – **0.2 pts**;

deriving *M* – **0.8 pts**;

within 10% - 0.2pts)

Remark.

- 0.4 pts;

- 0.6 pts;

ance in i) and force balance in ii):

Solutions that use force balance and torque bal-

i) correctly identifying all forces acting on

use that $\mu = \frac{F_f}{N}$, where F_f is friction force and

writing force balance equations using angles

numerical result with high enough precision

- **0.4 pts**; (error within 5% - 0.4pts, error

writing force balance equations using angles

combining with equations form part i) and

numerical result with high enough precision

- **0.4 pts**; (error within 5% - 0.4pts, error

ii) correctly identifying all forces acting

writing torque balance equation – **0.4 pts**;

Deriving μ – **0.4 pts**;

Numerical result with high enough precision - 0.4 pts.

Solutions that use point O' in *ii*): Correctly identifying all forces acting on sys-

tem - 0.2 pts;

Use fact that vectorial extensions intersect at one point or another way to take into account torque balance for point *O*′ – **0.8 pts**; Use torque balance for gravitational forces –

0.4 pts;

Express formula for mass M - 0.2 pts; Numerical result with high enough precision - 0.4 pts.

iii) (2 points) Imagine a pocket of air with fixed mass moving around in the atmosphere. Let the pocket's volume be V = V(z). In an adiabatic atmosphere, $pV^{\gamma} = \text{const}$, where $\gamma = c_p/c_v = 1.39$. Now, $pV \propto T$ and $\rho \propto V^{-1}$, SO

$$pV^{\gamma} \propto V^{\gamma-1}T \propto \rho^{1-\gamma}T = \text{const.}$$

Hence,

$$\rho(z) = \rho_0 \left(\frac{T(z)}{T(0)}\right)^{\frac{1}{\gamma-1}} = \rho_0 \left(1 - \frac{gz}{c_p T_0}\right)^{\frac{1}{\gamma-1}}.$$

Grading: There are two expected solutions. One of them is given by the sample solution while the other involves integrating $d\rho$ from z = 0 to z.

Grading for sample solution:

Using or deriving the adiabatic relation Solutions that assume that $pV^{\gamma} = \text{const} - 0.6 \text{ pts}$;

Using or deriving an expression for $\gamma = c_p/c_p$ – 0.2 pts;

taining its dependence on V and/or on p, T $-0.6 \, \text{pts};$

pts;

Grading for alternative solution:

Using or deriving the relation for the pressure change $dp(z) = -\rho(z)gdz - 0.1$ pts; Using the relation $c_p - c_v = R/\mu - 0.2$ pts; Using ideal gas law or equivalent to get another differential – **0.3 pts**; Obtaining an expression for ρ in terms of other quantities of interest – **0.6 pts**; Correctly setting up the integral for ρ and zor equivalent quantities – **0.2 pts**; Obtaining the correct expression for $\rho - 0.6$ the air density and speed by either considpts;

iv) (3 points) The drone stays afloat by using the motor to push air through its propellers. The amount of thrust is clearly a function of the density of the air and the speed v at which air goes through the propellers.

Force balance can be written down as F – $m_{\text{tot}}g = 0$, where *F* is the vertical thrust and $m_{\rm tot}$ the total mass of the drone. If **A** is the effective area of the propellers, it's possible to write down the expression for **F** by either using the dynamical pressure ρv^2 or by considering the conservation of momentum. In a time interval Δt , a volume of $\Delta V = Av\Delta t$ of air passes through the propellers. The air volume carries momentum $\Delta p = \Delta V \rho v$, so the thrust is given by $F = \Delta p / \Delta t = A \rho v^2$.

Secondly, it's possible to tie the power output *P* of the motor with outside air density and speed. Notably, the air is pushing the propellers vertically up with a force F. In order to function, the propeller blades need to be slanted. This amounts to a torque that's proportional to F. Further, it's clear that the rotational speed of the propeller blades is also proportional to v. This means that the

the product of *F* and *v* and so $P \propto \rho v^3$. In Deriving an exact expression for ρ , or ob- our considerations, the output power of the drone is fixed so $v \propto \rho^{-1/3}$ and $F \propto \rho(\rho^{-1/3})^2 =$ $\rho^{1/3}$. From force balance, $F = m_{\text{tot}}g$. Hence, Obtaining the correct expression for $\rho - 0.6$ $m_{\text{tot}} \propto \rho^{1/3}$. Evaluating the ratio at z = 0 and $z = z_{\text{max}}$, one gets

$$\frac{1.5m}{m} = \left(\frac{\rho(0)}{\rho(z_{\max})}\right)^{1/3} = \left(1 - \frac{gz_{\max}}{c_p T_0}\right)^{-\frac{1}{3(\gamma-1)}}$$

and so

$$z_{\text{max}} = \frac{c_p T_0}{g} \left(1 - 1.5^{-3(\gamma - 1)} \right) = 11.3 \,\text{km}.$$

Grading: Writing down the force balance equation – **0.4 pts**;

Deriving a relation between the thrust and ering momentum conservation over a small time interval or using the expression for dynamical pressure – **0.8 pts**;

Tying the motor power with air density and speed – **0.6 pts**;

Finding a relation between the maximum lift power and air density – **0.4 pts**; Evaluating the two conditions for maximum lift power of the drone at z = 0 and $z = z_{max}$ — 0.2 pts;

Obtaining the correct expression for $z_{\rm max}$ – 0.4 pts;

Obtaining the correct numerical value for $z_{\rm max} - 0.2 \, {\rm pts};$

5. BOTTLE'S SOUND (8 points) – Solution by Jaan Kalda, marking schemes by Eero Uustalu (task i), Topi Löytäinen, and Miha Marttinen (tasks ii, iii).

i) (4 points) The following frequencies can be obtained for 1-litre bottle, measured frequency of sound is tabulated versus the volume of water in the bottle.

V (ml)	0	100	200	310	400	
f (Hz)	144	151	163	175	185	
V (ml)	500	600	700	800	880	930
f (Hz)	205	230	260	325	420	520

is not awarded)

There is at least one measurement with empty bottle (*V* = 0) **0.2 pts**.

There is at least one measurement with less than 10% of the bottle's volume being empty 0.2 pts.

There is at least one measurement in each of the volume ranges: $0 < V/V_0 \le 20\%$; $20 < V/V_0 \le 40\%$; $40 < V/V_0 \le 60\%$; $60 < V/V_0 \le 70\%$; $70 < V/V_0 \le 80\%$; $80 < V/V_0 \le 90\%$; **0.2 pts**.

Quality of measurements: in f^{-2} versus V graph, the data should lie on a strait line. Every point (up to 10th point) which is "good", i.e. lies on a line – **0.2 pts**. If an outlier point **Grading:** corresponds to the second harmonic, 0.1 pts is given instead of 0.2 pts.

Volume of the bottle measured: 0.2 pts. If volume is not measured but read from the label -0.1 pts.

If instead of the volume of water, the volume of air is used, the total score for task i is multiplied by 0.8 and rounded up to the first decimal digit. The same applies if frequency is not recorded in Herz, but musical notes.

If only a graph is built with no tabulated data, subtract 10% from the final result of this subtask.

ii) (1.5 points) We can consider the air in the region of the bottle's neck of volume $v \ll V_0 =$ 11 as a mass $m = \rho_a v$ (ρ_a denotes the density of air) which can move back and forth squared period (ms²). while the air inside the bulk of the bottle serves as a spring. If the air inside the neck moves by distance x, the volume inside the bottle is changed by Ax, where A denotes the

output power of the motor is proportional to **Grading:** The measurement data give evid- cross-section area of the neck. The process ence that volumes have been measured cor- is fast, characteristic time is around few milrectly: **0.2 pts** (for instance, if a portion of liseconds, so we can consider it to be adiawater was added without making a notice of batic (characteristic time of thermalization is it, all the subsequent volumes are offset by a on the order of a second). From $pW^{\gamma} = \text{const}$ certain amount, and in that case, this 0.2 pts (where $W = V_0 - V$ denotes the air volume inside the bottle) we obtain $\ln p + \gamma \ln W = \text{const}$, hence $\frac{\Delta p}{p} + \gamma \frac{\Delta W}{W} = 0$, i.e.

$$\Delta p = -\gamma p \frac{\Delta W}{W} = \gamma p \frac{Ax}{W}.$$

Now we can write the equation of motion for the air inside the neck as

$$\rho_a v \ddot{x} = -\Delta p A = -x \gamma p \frac{A^2}{W},$$

hence the frequency

$$f = \frac{1}{2\pi} \sqrt{\gamma \frac{pA^2}{\rho_a v W}} = \frac{1}{2\pi} \sqrt{\gamma \frac{RT}{\mu} \frac{A^2}{v(V_0 - V)}}.$$

- 1.5p: If $f \propto 1/\sqrt{V_0 V}$ [or $f \propto (V_0 V)^{-n}$ with $n \approx 0.5$] either based on data analysis or adiabatic oscillation approach.
- 0.5p: Data analysis leading to unphysical (linear, quadratic, exponential,...) dependence.
- 1p: Standing wave approach or data analysis leading to 1/V dependence.

iii) (3 points) Based on our previous result, we can see that the squared period

$$T^{2} = 4\pi^{2} \frac{\mu}{RT} \frac{v(V_{0} - V)}{A^{2}}$$

is a linear function of the volume of water. Using the measurement data we calculate the

V (ml)	0	100	200	310	400	
$T^2 (ms^2)$	48.2	43.9	37.6	32.7	29.2	
V (ml)	500	600	700	800	880	930
$T^{2} (ms^{2})$	23.8	18.9	14.8	9.5	5.7	3.7

These data are plotted below.

The linear fit of these data yields

 $T^2 = 48 \,\mathrm{ms}^2 - V \cdot 48 \,\mathrm{ms}^2/\mathrm{l},$

so that

$$f = \left(48\,{\rm ms}^2 - V \cdot 48\,{\rm ms}^2/{\rm l}\right)^{-1/2}.$$

Grading:

• 1p: For graph (labels, units)

- 1p: Linearization or comparison to model prediction.
- 1p: For parameterization consider-ation either theoretical or physical (heuristic) justification

