1 Three balls

States that the CM moves with a constant velocity $v/3$	$0.5 \ \mathrm{pts}$
Correctly writes the law of conservation of momentum	
Calculates v_A , v_B and v_C in the CM reference frame	0.9 pts
Correctly writes down kinematic relations for the two rods	
Calculates the kinetic energy $E = mv(2/3)$	0.6 pts
Correctly writes the law of conservation of energy	
Calculates the angular momentum $L = mv\ell$	1.5 pts
Correctly writes the law of conservation of angular momentum.	
Proves the impossibility of the case $\varphi = 0$	1 pt
States that the minimum distance is met when $d\varphi/dt = 0$	$0.5 \ \mathrm{pts}$
Comes to the conclusion that v_A and v_C are perpendicular to AC	
States that at this moment the rods AB and CB have identical angular	1 pt
velocities.	
Uses the relation $I = L^2/(2E)$	1 pt
Uses $L = I\omega$ and $E = I\omega^2/2$	
States that the CM is in the medicenter	0.5 pts
Calculates I as a function of d or φ	$1 \mathrm{pt}$
Equalizes the two expressions for I	$0.5 \ \mathrm{pts}$
Finds the minimum value of d	$1 \mathrm{pt}$

2 Solenoid

Stating that boiling starts when pressure becomes equal to p_s , the sat-	1 pt
uration pressure (full marks if used correctly implicitly)	
Neglecting p_s as compared to p_0 (full marks if used correctly implicitly)	$0.5 \ \mathrm{pts}$
Neglecting water column pressure as compared to p_0 (full marks if used	$0.5 \ \mathrm{pts}$
correctly implicitly)	
Concluding that drop due to magnetic forces must be equal to p_0 (full	1 pt
marks if used correctly implicitly)	
Showing that $p_0 = p + (\mu_r^{-1} - 1)B^2/(2\mu_0)$	4.5 pt
Partial score for failed attempt: using formula for magnetic field energy	1 pt
density $w = B^2/(2\mu_r\mu_0)$	
interaction energy $\Delta w = (\mu_r^{-1} - 1)B^2/(2\mu_0)$	$1.5 \ \mathrm{pts}$
relating interaction energy difference to pressure difference	2 pts
Alternative approach with dipole-field interaction analysis	
Energy of a magnetic dipole \vec{d}_m in magnetic field \vec{B} : $-\vec{d}_m \cdot \vec{B}$	$0.5 \mathrm{~pts}$
Hence, force acting on a magnetic dipole (parallel to \hat{x}) in magnetic field	$0.5 \mathrm{~pts}$
(parallel to \hat{x}): $F = d_m \frac{\mathrm{d}B}{\mathrm{d}x}$	
Induced magnetic dipole moment density: $J = B\chi/(\mu_r \mu_0)$	$0.5 \mathrm{~pts}$
Hence, magnetic force per volume $f_m = B\chi(\mu_r\mu_0)^{-1}\frac{dB}{dx}$	$0.5 \ \mathrm{pts}$
This can be rewritten as $f_m = \frac{1}{2}\chi(\mu_r\mu_0)^{-1}\frac{dB^2}{dx}$	$0.5 \ \mathrm{pts}$
Magnetic force is balanced with the pressure force per volume $f_p = -\frac{dp}{dx}$	$0.5 \ \mathrm{pts}$
Hence $\frac{\mathrm{d}}{\mathrm{d}x} \left[-p + \frac{1}{2} \chi(\mu_r \mu_0)^{-1} B^2 \right] = \mathrm{const}$	$0.5 \mathrm{~pts}$
Hence $p_0 - p = -\frac{1}{2}\chi(\mu_r\mu_0)^{-1}B^2$	$0.5 \ \mathrm{pts}$
Remark: if the pressure is calculated as a pressure from induced	
solenoidal currents (due to water magnetization) near the side walls of	
test tube, only 2 point out of 4.5 is given (because the pressure at the	
water-wall interface is unknown).	
Using or deriving formula for the magnetic field inside a long solenoid	1 pts
$B = IN\mu_0/\ell$	
Using the above results, expressing I	1 pts
Remark: this point can be given only if the solution is correct, except	
for a possible mistake by a factor of $\sqrt{2}$	
Evaluating I numerically	$0.5 \ \mathrm{pts}$
Remark: this point can be given only if the solution is correct, except	
for a possible mistake by a factor of $\sqrt{2}$	

3 Staircase

A (2 points in total for part A)

1.
$$x(n) = n^{2/3}\lambda$$
 (1 pt).

2. $d_n = x(n+1) - x(n) = \lambda[(n+1)^{2/3} - n^{2/3}]$ (0.5 pt) For $n \gg 1$, $d_n = (2/3) \lambda n^{-1/3}$ (0.5 pt)

Other solutions leading to the correct answer without computing x_n are accepted. 0.5 pt for final expression of d_n are awarded only if both the prefactor and the exponent are correct.

- B (8 points in total for part B)
 - 1. Minimal energy principle expressed mathematically (1 pt)
 - 2. Idea of minimization against small changes in shape (1 pt)
 - 3. Volume conservation principle (2 pt).
 - 4. Energy cost for displacements of one step, $\epsilon_n(\delta)$ or equivalent, computed correctly (2 pt).
 - 5. Combination of energy minimization and volume conservation in mathematically correct form (1 pt).
 - 6. Correctly derived final answer $\nu = -2$ (1 pt).